Technology Description
Antigonococcal peptide inhibitors of Neisseria gonorrhoeae that act against a non-conventional new target, nitrite reductase AniA, that is necessary for N. gonorrhoeae anaerobic respiration and biofilm formation. The anaerobic life style is an important state during disease and favored in biofilms, which form in cervical gonococcal infections. In nitrite consumption assays carried out with two separate peptides, 90-50% inhibition of nitrite reductase activity was observed at concentrations of 0.6 and 0.3 mM, respectively. Work conducted to-date demonstrates the peptide as the first identified inhibitor of nitrite reductase with promising inhibitory activity in vitro as well as in whole cell assay. Finally, the MIC50 value for the original peptide C7-3 and its derivative C7-3m2 against anaerobically grown N. gonorrhoeae was 0.6 mM. It is believed the pharmacologic inhibition of targeted enzyme will reduce fitness of gonococcus in the genital tract, where oxygen tension is reduced, and augment the ability of existing antimicrobials to clear the pathogen (OSU no. 16-52).
Features & Benefits
Applications
Industry Research Interests
Background of Invention
Neisseria gonorrhoeae causes the sexually transmitted infection, gonorrhea, which is highly prevalent worldwide and has a major impact on reproductive and neonatal health. Among human-colonizing Neisseria species only N. gonorrhoeae, the causative agent of gonorrhea, is always considered pathogenic. Gonorrhea remains a serious public health concern with 78 million new cases annually worldwide. The “superbug” status of N. gonorrhoeae necessitates development of drugs with different mechanism of action.
Status
Patent pending (PCT)