Extrusion System for 3D Printing of Viscous Elastomers

Technology Description

Researchers at OSU have developed a novel 3D print system that enables precision printing of complex structures from flexible elastomers, including multiple component curing silicone. Two or more precursors are pumped to the printhead for mixing and extrusions, while temperature and rheological properties are monitored and controlled. Once extruded, the printhead further cures the elastomers to enable the rapid deposition of sequential layers and the construction of complex 3-dimensional structures on the order of 10’s of cm in every build plane. The elastomers are extremely soft (Shore hardness of 10A) and flexible, opening applications in medical devices, material handling, environmental exploration, and many others.

Features & Benefits

  • High resolution (0.4mm)
  • Soft and flexible (Shore 10A)
  • Multiple component feedstocks

Applications

  • Rapid prototyping
  • Soft robotics
  • Material handling

Background of Invention

Conventional fabrication of an elastomeric component for soft robotic or actuator applications is laborious and time consuming. Many molding and casting techniques are also inconsistent and difficult to control. Additive manufacturing is an attractive alternative, but significant challenges remain in printing highly viscous materials into complex structures. To date, commercially available systems still cannot produce complex components while also achieving similar strain and hardness compare to other techniques. This technology seeks to fill that gap by providing a printhead that can utilize viscous silicone elastomers while managing the rheology and curing process.

Status

Patent pending

   

 

Patent Information:
Tech ID:
OSU-18-73
Contact:
David Dickson
IP & Licensing Manager
Oregon State University
541-737-3450
david.dickson@oregonstate.edu
Inventors:
Osman Yirmibesoglu
Yigit Menguc
Keywords:
3D Printing
Additive Manufacturing
polymer
silicone elastomers
Soft Robotics
© 2024. All Rights Reserved. Powered by Inteum